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ABSTRACT

-- jSvera methods for nonlinearly constrained optimization hav been sug-
gested in recent years that are based on solving a quadratic programming (QP)
subproblem to determin, the direction of search. Even for dens problems, there
is no consensus at present concerning the 'best' formulation of the QP sub-
problem. When solving large problems, many of the options possible for small
problems become unreasnably expensive in terms of storage and/or arithmetic
operations. This paper discusses the inharent difficulties of developing QP-based
methods for large-scale nonlinearly constrained optimisation, and suggests some
possible approaches. <-.
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I. IItdutsn

The problem of concern is the following:

NCP minimize F(x)Sgems
subject to As = b

I <X <5a.

The objective function F(s) is assumed to be twice-continuously diffrentiable.
The matrix A has m, rows; the vector e(z) contains a set of twico-continouly
differentiable nonlinear constraint functions {c(z)}, = 1,..., m2.

We assume that the number of variables and constraints in NCP is large',
and that A is sparse. Obviously, the definition of "large' depends on the available
storage and computation time. It will generally be assumed that the number of
nonlinear constraints is small relative to the number of linear constraints.

No general linear inequality constraints have been included in the form NCP
because the methods to be discussed are based on extensions of the simplex
method (see, e.g., Dantsig, 1963). In solving large linear programs (LPs), in-
equality constraints are converted to equalities by adding slack variables. The
purpose of this transformation is to ealow the simplex method to be implemented
with only column operations on the constraint matrix. Furthermore, since A is
stored in compact form, the added slack variables do not significantly increase
the storage requirements.

There is still no universal consensus among researchers about the beet al-
gorithm for nonlinearly constrained optimisation in the dense case. However, it
is generally agreed that methods based on a quadratic programming (QP) sub-
problem are very effective (one class of such methods will be briefly summarised
in Section 3). Our concern in this paper is with the general effect of problem
size on the algorithmic procedures associated with QP-based methods, rather
than with a complete description of a particular algorithm. We shall consider
the mechanics of the computations and the modifications that are necessary to
perform them efficiently (or at all).

As a rule, there are fewer algorithmic options for large problems, mince
many computational procedures that are standard for small problems become
unreasonably expensive in terms of arithmetic and/or storage. However, in
another sense the options for large problems are le straightforward because
of the critical effect on efficiency of special problem structure and the details of
implementation.

When solving large problems, it may be necessary to alter or compromise
what moms to be an "ideal' or *natural* strategy. In fact, an apprach that
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would not be considered for small problems may turn out to be the best choice for
some large problems. For example, in solving large LP problems by the simplex
method, it is often very expensive to compute mU the Lagrange multipliers in or-
der to choose the incoming column at a given iteration. With a partial pricing"
strategy (see, e.g., Orchard-Hays, 1968), only some of the multipliers are com-
puted. Although more iterations may be required to obtain the optimal solution,
the work per iteration is typically lower, and thus the total computational effort
may be decreased.

Similarly, certain standard assumptions about the relative costs of portions
of an algorithm become invalid in the large-scale case. For example, the measure
of efciency of an algorithm for dense unconstrained optimization is often taken
as the number of evaluations of user-supplied functions (e.g., the objective func-
tion, the gradient) that are required to reach a specified level of accuracy.
Although this mesure is recognised to be overly simplistic (see, e.g., Hillstrom,
1977; Lyness and Greenwell, 1977), it is nonetheless a reasonable measure of
efectiveness for most problems. This is because the number of arithmetic opera-
tions per iteration tends to be of order ns at most, and the amount of work
required for storage manipulation is negligible. However, even for unconstrained
problems of moderate size, the work associated with linear algebraic procedures
and data structure operations tends to become significant with respect to the
function evaluations (see, e.g., the timing results obtained by Thapa, 1980).

The following assumptions and notation will be used throughout the paper.
A local minimum of NCP will be denoted by se The gradient of F(z) will be
denoted by g(z), and its Hessian matrix by G(z). The gradient of the i-th
nonlinear constraint function c€(z) will be denoted by agx), and its Hessian by
GAs). The first-order Kuhn-Tucker conditions (see, e.g., Fiacco and McCormick,
1968) will be assumed to hold at , so that there exists a Lagrange multiplier
vector )! corresponding to the active constraints.

In an iterative method for computing s, the (k + 1)-th iterate is defined as

Zs-k-= s + ap,

where pa is the search direction and the positive scalar ca is the step length.
Usually, PA is chosen to be a descent direction with respect to some merit
function, and a* is chosen to produce a sufficient decrease" in the merit function
(see Ortega and Rheinboldt, 1970, for a definition of 'sufficient decreme').

t. Lwm iede UmmeaI Cest Wood Optimdzbetl

In this section, we briefly review the key features of an efcient method for
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largecal, linearly constraed optimisation. The problem format is given by

minimise F(s)

subject to Ax = (b)
I <8<: U.

The algorithm for (1) to be described is the reduced-gradient algorithm
(Wolfe, 1962) of murtagh and Saunders (1978), which has been implemnted
in the Fortran program MINOS (Murtagh and Saunders, 1977). An =active set'
strategy is used to compute the search direction; this means that at each iteration
a certain subset of the bounds ae treated as equalities, and the corresponding
variables are held fied at these bounds during the iteration. Let A denote the
matrix of coefficients corresponding to the active constrainu; A will contain all
the general constraints plus the active bounds. In order for the same constraints
to be active at the next iterate, the search direction must satisfy

= 0. (2)

Let Z denote a matrix whose columns form a bads for the null space of , so
that As = 0. The relationship (2) implies that p must be a linear combination
of the columns of Z, i.e.,

P= rp, (8)

for some p..
In order to define a direction that satisfies (2) when A Is large and sparse,

the matrix A is (conceptually) partitioned as follows:

A=(D S N). (4)

The matrix B (for bads', by analogy with linear programming) is square and
non-singular, and its columns correspond to the basc variables. The columns of
N correspond to the noabasc variables (those to be fixed on their bounds). The
columns of the matrix 8 correspond to the remaining variables, which are termed
superbaasc. Note that the number of columns in B is Azxd, but the numbers of
columns in S and N may vary. We emphasise that only column operations are
performed on B as the algorithm proceeds.

At a given Iteration, the active constraints are given by
J5 S N)(" = b )j,'I)

(I 7 igG (5)(0 0 1 s

where the components of it are takn from either I or u, depending on whether
the lower or upper bound is active.
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The matrix S used here can be represented as

(JB1 (6)

0

Naturally, B- 1 and are not computed explicitly. Rather, a sparse LU fac-
torization of B is maintained; periodic refactoriuation (often termed "reinversion')
is used to condenm storage and regain accuracy in the factors (see Saunders,
1976; Raid, 1976).

The form (6) of Z means that the partitioning of variables into basic, non-
baic, and superbasic sets carries over to the calculation of the search direction,
p. If p is partitioned as (p., P.), from (3) and (6) we see that p. = 0 and

Bps = -Spe. (7)

Equation (7) shows that ps can be computed in terms of pe, and thus the
superbasic variables act as the "driving force" in the minimization. To determine
the vector ps, a quadratic approximation to the objective function is minimised
subject to the constraint (2); the search direction therefore *solves' an equality-
constrained quadratic program of the form

minimise 1pTH, + Tp (8a)

subject to Ap = o, (Sb)

where H is an approximation to G(s), the Hessian matrix of F(z). The solution of
(8) can be obtained using only the projected matrix ZTHZ (so that H itself is not
regired). In the Murtagh-Saunders algorithm, a quasi-Newton approximation to
IG(x)Z is maintained in the factorized form RTR, where R is upper triangular,

and pe is computed from

RTRP = -Zr. = -STB-T + .. (9)

After p. and ps have been computed from (9) and (7), the value of the step
length is chosen to achieve a suitable reduction in F.

As long as JflZrU is "large, only the basi and superbasic variables are
optimised. If one of these variables encounters a bound as the iterations proceed,
it is moved into the set of noabasic variables, and the set of active constraints is
atered acordingly.

When IZT#Il is smali', It is considered that the curret Iterate is nearlym
optimal on the current set of active constraints. In this dtuation, we determine
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whether the objective function can be further reduced by releasing any nonbasic
variable from its bound. This possibility is checked by computing Lagrange
multiplier estimates from the system

m 0 )r ). (10)N1 0 fo--

We define the vectors r and a from

Br-= ; (11)
a = NTir. (12)

The system (10) is compatible when ZTg = 0, since in this case

g, = SII-T. = STX.

The vector a thus provides a set of Lagrange multipliers for the bound constraints
that are active on nonbasic variables. If a nonbasic variable can be released from
its bound, the iterations continue with an expanded superbasic set.

The procedures of this method differ in several ways from those used in
the dense case. Firstly, the null space of A is defined in terms of a partition
of the variables, rather than a matrix Z with orthogonal columns (see Gill
and Murray, 1974). The expression (6) for Z indicates that an ill-conditioned
basis matrix B can affect the condition of all calculations in the algorithm, and
may drastically alter the scaling of the variables. When the columns of Z are
orthogonal, IIZTFI1l < I0; otherwise, ZT, is "unscale. Since an orthogonal
Z is not practical (in terms of storage or computation) for most large-scale
problems, additional numerical difficulties are likely in the computation of p and
the projected Hessian approximation.

Secondly, the multiplier estimates computed from (10) are exact only when
Z TF = 0, and the neighborhood in which their sign is correct depends on the
condition of B. Hence, when IIZTFII is merely 'small', it may be inefficient
to release a variable based on the vector a from (12). Although a feasible
descent direction can be computed, the deleted constraint may very soon be re-
encountered. This difficulty is less severe in the dense case, where the multiplier
estimates computed with an orthogonal Z will in general have the correct sin
in a much larger neighborhood of a constrained stationary point because the sise
of the neighborhood depends only on the condition of A(see Gill and Murray,
1979a, for further discussion). The increased unreliability of Lagrange multiplier
estimates is unavoidable when Z is given by (6), and must be taken into account
in all large-scale optimisation.

.. .=" ... . . . ' . . . . . -...... . . .. . l "tI . .' ...I -- lb a . . ...
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Finally, the cost of computing and updating the factorization of B Is sub.
stantial, in terms of both arithmetic operations and storage manipulation. For
many large-scale problems, the work associated with performing the steps of the
algorithm completely dominates the cost of evaluating the nonlinear objective
function.

8. VP-Based Methods fbr Dome Problems

This section will be concerned entirely with the treatment of nonfinear con-
straints. If the problem NCP contains only nonlinear constraints, the assumed
optimality conditions imply that z* is a stationary point of the Lagraagan func-
tion L(z, )) - F(z) -Xre),

when X = )* (where E(z) denotes the set of constraints that hold with equality
at d).

In a QP-based method, the search direction is the solution of a QP sub-
problem

minimise !9Hp + gp (13.)

subject to Ap {}d. (13b)

The quadratic objective function (13a) of the QP subproblem is often viewed
as a quadratic approximation to the Lagrangian functon, in which case y. and
H represent the gradient and Hessian of the Lagrangian function, respectively.
However, the vector fL is usually taken as u(z); this choice does not alter the
solution of some QP subproblems, and has the benefit that the multipliers of
the subproblem may then be used as estimates of the multipliers of NCP. The
linear constraints (138) of the subproblem are based on linearisations of the
nonlinear constraints at the current point, and thus A in (13b) usually includes
the constraint gradients {*(ast)}.

QP-based methods have been proposed by many, including Wilson (1963),
Murrq (1969), Biggs (1972), Garcia and Mangasasran (1976), Han (1976, 1977),
Wright (1976), and Powell (1977, 1978). Although It can be shown that under
certain conditions, QP-based methods are equivalent to other methods (Tapia,
1978), we shall consider only methods in which a QP subproblem is actually
solved to obtain the search direction.

There ae substantial variations in formulation of the QP subproblem (13).
Certain crucial issues remain unresolved: represetation of H in (13.); sped-
fication of d in (131); treatment of an infeusible or unbouded subproblem;
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recovery from i-c ndtio g computation of reliable Lagrange multiplier e-
timates; definition of a merit fucion to be used in defining the step length at,;
and maintenance (if possible) of superlinear convergence. See Maratos (1978),
Chamberlain (1979), Murray and Wright (1980) and Chamberlain @t al. (1980)
for discussions of some of these issues.

We shall mainly discuss a strategy based on formulating the QP subproblem
(13) with only equaity constraints. This will be termed the equality QP (EQP)
approach, and the subproblem is given by

minimize ipTHp + p (14a)

subject to Ap d. (141)

The t rows of the matrix A represent a selection of constraints that are considered
to be "active*. (We shall not be concerned with how these constraints are
selected.) The constraints (14b) are assumed to be compatible.

It is convenient both conceptually and computationally to write the solution
of (14) as the sum of two orthogonal vectors. Let Y denote a matrix whose
columns form a basis for the range space of AT; as in Section 2, Z will denote a
matrix whose columns form a basis for the null space of A. The solution of (14)
can be written as

9 = YPe + Zp,. (15)

The vector pv is the solution of the linear system

AYp, = . (16)

When the constraints (14b) ae consistent, the system (16) is compatible; when
A has full row rank, the vector py is unique, since AY' is a non-singular matrix.
An important difference from the linear-constraint case is that in general Py
is non-sero (since J is non-zero). Hence, we must take account of the range
space component as well as the null space component in computing the search
direction.

The vector p. is the solution of the linear system

ZTHZps = -Zrl- ZTHYpy. (17)

When Z TrHZ is indefinite, the interpretation of (17) is ambiguous; see Murray
and Wright (1980) for further discussion of this point.

When A is small, suitable matrices Y and Z with orthonormal columns can
be obtained from the 14 factorization of A, since we have

AQ = A(Y Z)=(L 0).
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The (s - t) X ( - t) matrix ZTHZ needed to compute Ps can be formed
in various was. If second derivatives are available, H can be taken as W, the
current approximation of the Hessian of the Lagrngian function

t

W = G(z,) - XGdzA),

where {X} are the current Lagrange multiplier estimates. If first derivatives
are available, the matrix WZ can be approximated by finite-differences of the
gradient of the Lagrangian function along the columns of Z. Note that the
matrix HZ (rather than H itself) is required to solve (17); thus, substantial
efficiencies are possible with a discrete Newton method, since only n - t gradient
evaluations are required to approximate WZ, compared to the possible n evalua-
tions needed to approximate the full matrix W. A quasi-Newton approximation
to W or ZTWZ may also be recurred.

4. The Use of a Linear Ceite'alned Subproblem

Given the sophisticated techniques available for large-scale linearly constrained
optimization (see Section 2), it is logical to attempt to apply them to the non-
linearly constrained problem NCP. One possible way to do so is to pose a sequence
of linearly constrained subproblems with a general (rather than quadratic) objec-
tive function. Such a method was proposed by Robinson (1972) and Rosen and
Kreuser (1972), and more recently by several others (e.g., Van der Hoek, 1979).
The specific application of this idea to large-scale problems using the algorithm
described in Section 2 has been suggested by Rosen (1978) and Murtagh and
Saunders (1980ab).

In order to give the flavor of this approach, we shall briefly describe the
algorithm of Murtagh and Saunders. Let zk and )A denote the current iterate
and the current estimate of the Lagrange multipliers; other quantities subscripted
by k will denote those quantities evaluated at z%. The next iterate is obtained
by solving the linearly constrained subproblem

minimise F(z) - X)Te(z) + e(W)TEsE~tm

subject to Az (18)

1<3<u.

The constraints of (18) that are involved in AA are obtained by linearizing all
the nonlinear constraints. The function 9(t) is defined as the original nonlinear
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function minus its current lineaisation:
a~)= e(z) - ct - A z- ct).

Note that any iterative procedure for solving (18) requires evaluation of the
problem functions (in contrast to solving a QP subproblem, where all the work
is linear-algebraic).

The nonlinear objective function of the subproblem (18) is called a modified
augmented Lagrangian function. The penalty term JpE(z)Tf(z) is included to en-
courage progress from a poor starting point. When z,% is judged to be sufficiently
close to z, the penalty parameter p is set to sero in order to achieve the quadratic
convergence proved by Robinson (1972, 1974).

Some aspects of this approach to solving NCP are relevant to our later
discussion of QP-based methods. Other aspects illustrate the compromises that
are often necessary in solving large-scale problems.

For dense problems, methods based on linearly constrained subproblems
have generally been regarded as less efficient than QP-based methods, in terms
of the number of function evaluations required for convergence (see, e.g., the
comments in Murtagh and Saunders, 1980a). For certain problem categories,
solving a more difficult subproblem sometimes leads to an improvement in overall
efficiency. However, the additional work necessary to solve (18) as compared to a
QP does not appear to produce a comparable increase in efficiency for problems
in which the overhead associated with performing linear algebraic procedures is
small relative to the cost of evaluating the nonlinear functions. Whether the
tradeoff will be different in the sparse case is still unknown.

A method based on (18) generates the next "outer' iterate through a sub-
problem whose solution also requires an iterative procedure (which generates
'inner" iterates). In the MINOS/AUGMENTED implementation of this method
(Murtagh and Saunders, 1980b), a limit is imposed on the number of inner itera-
tions. If the maximum number of such iterations is reached, the inner procedure
is terminated, and its final iterate is taken as the next outer iterate. It seems
essential to impose such a limit in the large-scale case, since it is unlikely that the
initial Jacobian approximation and multiplier estimates will remain appropriate
if hundreds of iterations are required to reach optimality for the subproblem.
The effects of such premature termination remain to be analysed.

A 'good' choice for the penalty parameter p is crucial in the success and
efficiency of the method on certain problems. The considerations in selecting
p are similar to those in an augmented Lagrangian method (for a survey, see
Fletcher 1974). A too-small value of p may lead to excessive constraint violations
in the solution of (18), an unbounded subproblem (18), or a poorly conditioned
Hessian of the augmented function. A too-large value of p may also cause the
Hessian to be ill conditioned; it may have the additional undesirable effect of
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forcing the iterates to follow the constraint boundary very closely. Furthermore,
the decision as to when to set p to zero is not straightforward.

The value of X1 in (18) is taken as the multiplier vector of the previous sub-
problem. If the previous subproblem was solved to optimality, this ensures that
the multipliers corresponding to inequality constraints have the correct sign, and
that X) = 0 for inactive constraints regardless of the partition (B S). However,
it means that multiplier estimates are not computed with the most recent infor-
mation, but rather are based on the *old* Jacobian. In addition, the interpreta-
tion of the available Lagrange multiplier estimates is further complicated if an
inner iteration is terminated before convergence.

5. Extension of QP-Besod Methods to the L -Seale Case

In the remainder of this paper, we shall consider some of the issues in developing
a QP-based method such as those described in Section 3 for the problem NCP. It
is assumed that the sparsity pattern of the Jacobian of the nonlinear constraints
is known a priori.

Even for dense problems, linear constraints (especially bounds) should be
treated separately from nonlinear constraints. If they are not, considerable
inefficiencies tend to be introduced into solution methods; furthermore, the
iterates will not in general be feasible with respect to the linear constraints. We
believe that QP-based methods should treat any linear constraints as if they were
the only constraints in the problem, in order to take advantage of the efficiencies
associated with purely linear constraints, and to ensure that the nonlinear func-
tions are evaluated only at points that satisfy the linear constraints.

When this approach is taken in an EQP method, the matrix A in (14b) will
include the general linear constraints and active bounds as well as the current
gradients of the nonlinear constraints. An EQP method should therefore include
a strategy to exploit the fact that only part of A changes from one iteration to
the next, since the rows of A that correspond to linear constraints and simple
bounds remain constant.

In the dense version of the EQP method discussed in Section 3, the search
direction was represented (and computed) in terms of matrices Y and Z obtained
from the LQ factorization of A. A similar representation of the solution of (14)
must be developed that is suitable for large-scale problems. In this section, we
sketch one possible approach, which is similar to that described in Section 2 for
the large-scale linear-constraint case.

The variables are partitioned into basic, superbasic, and nonbasic sets, with
a corresponding partition of the columns of A and the components of p and t.
Since the nonbasic variables are fixed on their bounds during a given iteration,
the vector p,1 must be zero (and can be ignored). To satisfy the linear constraints

I /
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(14b), it must hold thatr (B S )(')Pd\(B ) =d--, (19)

where B is a t X t square non-singular matrix, and d contains appropriate
elements of J. From (19) it follows that

Bp, = d- Sp.. (20)

Note that the components of d will be sero in positions corresponding to linear
constraints. Hence, for any pe, the definition of ps by (20) ensures that p will
be feasible with respect to the linear constraints of both the subproblem and the
original problem.

The vector pe is determined by minimisation of the quadratic objective
function (14a). Writing this objective in terms of the partitioned vector p, we
obtain

+pffpl r + 2 PP ;HI- (21)
+ +

where

Substituting for pg using (20) makes (21) a quadratic function in p. alone.
The optimal p. is the solution of a system of equations exactly analogous to (17)
for the dense case:

ZrHZp, = -Zrg + ZTH( B-0, (22)

where Z is given by (6).
At a typical iteration, B is given by

B=(1 B2 )}t (2)

If we assume that the linear constraints are placed first, the first ti rows (the
matrices Bi and Ba) correspond to the linear constraints, and the last t2 rows
(the matrices Be and B 4 ) correspond to the nonlinear constraints. Both B, and
B4 are square.

With the EQP approach described in Section 3, the matrix A in (14) includes
only the gradients of the active nonlinear constraints. The question therefore
arises of how to treat nonlinear inequalities in large-scale problems. The reasons
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noted in Section 1 for adding slack variables to linear inequality constraints
also apply to nonlinear inequality constraints. However, there might appear to
be some disadvantages. In particular, keeping all nonlinear constraints as rows
of B would seem to result in increased housekeeping costs, as well as wasted
computational effort in computing the gradients of inactive constraints. In fact,
neither of these disadvantages applies, and the slack variables corresponding to
nonlinear inequalities can be included with very little cost. The elements of the
search direction corresponding to the slack variables of the nonlinear constraints
can be ignored, and the line search involves only the original variables. The
value of a nonlinear slack variable at the next iterate is given by the recomputed
constraint value, which is used to determine whether the slack variable is basic.
All the other coefficients in the row of the Jacobian associated with a basic slack
variable can be set to zero, and there is no need to compute the gradient of the
corresponding constraint.

S. Roessmtg the Bas Invrsme

In this section, we consider methods for representing B -1 as the iterations of
an EQP method proceed. The inverse is never represented explicitly. However,
we use this terminology because the methods to be described solve the linear
systems that involve B without a complete factorization of B.

Changes in the columns of B that result as variables move on and off bounds
can be carried out exactly as in the linear-constraint case. The difficulty in
a nonlinearly constrained problem is that the last t2 rows of B will change
at each iteration due to constraint nonlinearities. We assume that it is not
computationally feasible to refactorize B at every iteration; however, periodic
refactorisation will be performed to condense storage and ensure accuracy in the
factors.

if both t2 and the number of non-zero elements in the last t 2 rows of B are
mall, the changes in B due to constraint nonlinearities represent only a small
number of column changes. In this cue, it would be practical to update the LU
factors of B In a standard fashion (on, e.g., Forrest and Tomlin, 1972; Reid,
1976; Saunders, 1976). However, each iteration would involve several column
updatu, and hence refactorisation would be required at more frequent intervals.

.1. P? omq gm& Since B1 includes only linear constraints, it is possible to
recur a factorization of B from iteration to iteration. This fact can be utilized
to advantage because systems of equations involving B or BT can be solved using
factorizatons of B, and a matrix the size of B4.
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For example, if the vector b is partitioned corresponding to (23) as (b, b2),
the solution of B: = b can be represented as

t&I + U2

where the vectors ul, t&2 and v, are calculated from

Bita1 = bi,
Dv1 = b2 - A (24)

Bjv2 = -/toj,
where

D = B 4 - BsB7IBa. (25)

This procedure is sometimes described as a partitioned inverse technique
(see, e.g., Faddeea, 1959). The matrix (25) is called the Schur complement (see,
e.g., Cottle, 1974). The steps of (24) are equivalent to block Gaussian elimination
on B, with B1 as the first block.

If t1 > t2 , the main work in (24) involves obtaining B-B2 (or B,-BT )
in (25). To reduce the work in this calculation, it is helpful to mauimise the
number of zero columns of B2 and/or Bs. This can be borne in mind whenever
B1 is refactorised, since there are some degrees of freedom in deciding which
variables are to be basic and superbasic. Once the LU factors of B, are available,
the matrices needed to compute D can be obtained by forming L- 1B2 and
U- T B. In the large-scale case, however, it will usually be more eMflent to
compute U- 1 L- 1 B2 or L-TU-TBL, depending on whether L and U ae stored
by columns or rows.

Although B1 is required to be a fixed size with this approach, the number of
active nonlinear constraints may vary. Therefore, it is not necessary to include
slack variables for the nonlinear inequality constraints.

6.2. An Appoimante Ivee" iteitrve ImpovemeaL An obvious strategy for
overcoming the dimculties of updating B- 1 as its last rows change is simply
not to update it. The technique of retaining a constant Jacobian or Hessian
approximation in Newton-type methods is widely used (see, e.g., Dennis, 1971),
and has been thoroughly analysed. With the approach described in Section 4,
the linear constraints remain constant until the general subproblem (18) has been
solved.

This idea and its extensions can be applied to a QP-baued method in sveral
ways. Let B-t denote an available representaon of an approimation to the

A J. . . . . . . . . i I - - i . L .. . . r+ , - . . .
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lnese of B (e.g., from the most recent factorization or some previous Ituaion).
We shall mention two possible strategies for using 0- to solve systems of
equations such as Bs = b. Firstly, we can simply solv the system using - 1 ;
in efect, this involves substituting B for B during some number of consecutive
itadions. Secondly, - 1 could be used further in an it ratUve Improvement
procedure (me, e.g., Wilkinson, 1965), assuming that B is also sailable.

Such approximations re acceptable in QP-bsed methods because the linear
constraints of the QP subproblem ae typically derived from optimality condi-
tions, and the precise s aon of the liner constraints is critical only near
the solution. Consequently, there is substantial freedom to define the constraints
(146) when :l is not close to i provided that a sufficient decrease in the merit
function can be guaranteed.

When D is the basis matrix from a previous iteration, the error in the
approximate inverse is of a special form because the first tj rows of B ae
constant. In general, B Mstis

D---B+F=B+

where the matrix A represents the change in gradients of the nonlinear con-
straings. Therore, we have

BB-1 = z+ ( 0 }t1h,"

Because of the reltionship between B and D, the structure of the error in
the approximate inverse is such that the equations (146) cor to inear
constraints are alwoy satisfied *exactly, even If B is used rather than B. In
gmneral, p. should satiy

Bp. = d- Spe.

If f is defined Instead from

at. = d- sp.,

then it follows that

=( + 8 )l-Sp
whee di ad e det the &,Art ad last ta oon1eogans of depeedvel.
Thim, when I. s used Insted of p., the alitie of the QP -sbp

L
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correspong to the linear cainstraints remain satisfied (with exact arithmetic),
regardle.s of RAN.

It is also Intructive to consider the sino of the wror that arises from using
Dlnstead of B. LA x be thead slutonot Bo s = , and let be the vector
such that a(z + h) = b. Assuming that IB-1F <1, it can be son that

RAN < xllFi
1:1 - HBN(1 - -IFII)'

where x is the condition number of B. Thus, when AN is small and B is not
too ill-conditioned, the relative error In z is bounded. (Note also that the bound
is penent of 16. This is important because the riht-hand aide of (146)
approaches zero as the iterates converge, and it would be unacceptable for the
bound on the relative error in the computed solution to increase.)

f we have the exact triangular factors L and U of 9 and can apply 8Bto
form the residual vector, then (with exact arithmetic) an iterative improvement
procedure for solving B = b will converge if

II - -1 BI < 1.

W'M this approech, B must remain a fixed sie, so that slack variables must
be included for the nonlinear inequlity constraints (in contrast to the method of
Section 6.1, where only the inequalities currently considered active were included
inB).

T. The Semev Oeetim fr te Supeb esk Vwlesbl

Given that we can obtain a rep.esentation of B- 1 (and hence of Z), a second
issue in impleme a QP-based method for large-scale problems is how to solve
the equaons (22) for p.. The difculty is that the storage and computation
associated with forming ZrHI (or IrH) may be prohibitive. Since H is a X a,
there will in general be inadequate storagp to retain a full version of H.

In may case, the dimension of the projected Hessian matrix Z THZ will
be relatively small at every iteration, even when the problem dimension is large.
if SIHZ Is mall enough to be stored, standard approaches from the des case
mo be used. For eample, a quasi-Newton approximation of the projected
Hessian of the Lagrangian fuwon may be maintained using update procedures
similar to those in the l"ner-co rint cas. Ay questions concerning such
procedure apply generally to nmoinewly o optimiaton, and ae no
particular to largemale problems. Howve, the techniqu of computing fte-
difbr oes alng the columns of S, which Is very successful for small problms,
is too expensive in the large-scale cas because of the ebrt required to orm
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I. Furthermore, even if W Itself is avalable, it is probably too costly to form
zWI.

Fortunately, another alternative is available when limitations of storage
and/or computation preclude an explicit representation of ZTHZ. Although we
shal discuss the method in the context of nonlinearly constrained optimisation,
it is equally applicable to large-scale linearly constrained optimisation (e.g., in
the method discussed in Section 2). Furthermore, it may be useful even when
the product ZrHZ can be stored, but is too costly to compute.

The liner conjugate-gradient method (Hestenes and Stiefel, 1952) is an
iterative procedure for solving the linear system

Sp = -t(

where R is symmetric and positive definite, without explicitly storing the matrix
R. Rather, a sequence of iterates (pi) is generated, using only products of R
with vectors. The vectors (pi) will be referred to as liner iterates, and the exact
solution of (26) will be termed the Newton direction. The vector y is usually the
gradient (or projected gradient) of some nonlinear function 0.

Conjugate-gradient methods are relevant to solving (22) because the product
of ZrHI and a vector v can in some circumstances be computed efficiently even
when ZrH, is not available. For example, if A in (26) is of the form ZrHZ,
where Z is given by (6) and H is spars, in Cenerl A will be a dense matrix.
However, if H can be retained in spase form, and Z and Zr can be applied as
noted in Section 2, the product Ru can be formed efciently.

A sparse matrix H can be obtained in several diferent ways. It may happen
that the Hessian of the Lagrangian function (W) is sparse, with a known sparsity
pattern. (This situation is les likely than in the unconstrained case, because the
Hessians of all the active constraints as well as the objective function must be
sparse.) In this cas, techniqus are available for analyzing the sparsity pattern
and determining special inite-diference vectors that permit an approximation
to W to be computed with relatively few evaluations of the relevant gradients
(see, e.g., Curtis, Powell and Reid, 1974; Powell and Toint, 1979). Alternatively,
a spares quasi-Newton approximation to W (see, e.g., Toint, 1977; Dennis and
Bhnsbel, 1978; Shanno, 1979) might be developed. Although our experience
with sparse quasi-Newton updates has been disappointing even in the uncon-
strained case (see Thsp&, 1M0), any improvements in such methods can be ap-
plid directly.

9 the Hessian of the Lagranglan function is not sparse, it is possible to
estimate the vector WI, by a flnito-dfrence along the vector Sy. Obviously,

somu o requires *dditio evluations of the problem functions.
A cmjugat"-gadiet method will be uef in solving (22) only If the linear

Iteraies cosergo rapidly; by assumpi , It is reasonable to compute a redl alv
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smal number of matrix-vector products involving ZrHI. Hence, it is esential
to precondition the conjupte-gradient method (see, e.g-, Aeisson, 1977). Let
C be a positive-definite symmetric matrix. The solution of (26) can be found by
solving the system C-itC-4 V = -C-if

and forming p = C-il. Let K denote the matrix C-1RC-; K has the same
eigenvallues as C- 1R, since they are similar matrices (C- 4 KC = C- 1R).
Since the linear conjugate-gradient method is known to converge very rapidly
when the coefficient matrix has clustered eigenalues, the preconditioning matrix
should be chosen so that as many as possible of the elgenvalues of C- 1!? are
close to unity.

When the projected Hessian is small enough to be stored explicitly, precon-
ditioning allows second-order information to be used in conjunction with a quai-
Newton method. Thus, if a quasi-Newton approximation of Z TWZ is maintained
(e.g., as RTR), instead of computing the quasi-Newton search direction from
RTRp. = - as in (9), we could solve

R-TZTWZR-l = -R-r

by the conjugate-gradient method, and then tak the Newton direction as p =
ZR- 1V. The preconditioning matrix may be modified during, or after the
completion of, the iterations of the conjugte-gradient method.

The truncated Newton method of Dembo and Steihaug (1980) "solves" (26)
by performing a limited number of iterations of the linear conjugate-gradient
method. The final iterate of the truncated sequence is then taken as an p-
proximate solution of (26). If a single linear iteration is used, p will be the
steepest-descent direction -1. Thus, the truncated Newton algorithm computes
a vector that interpolates between the steepest-descent direction and the Newton
direction.

Dembo and Steihaug show that, if 0 is positive definite and the initial Iterate
of the linear conjugate-gradient scheme Is the steepest-descent direction -, all
succeeding linear iterates will be directions of descent with respect to f. Gill,
Murray and Nash (1981) show how to generate a sequence of descent directions
for the can when R may be indefinite.

The hope with a truncated Newton method is to reduce the required num-
ber of linear conjugate-gradient steps, and the an of preconditioning would
therefore seem to be essenal. An additional benefit can also be produced by a
penttonin strae. In many optimisation methods, the search direction p
is computed implicitly or explicitly s

P = -M4,
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where M is a positive-definite matrix; for example, limited-memory quasl-Newton
methods define M as a low-rank modification to the identity matrix (see Shanno,
1978). If the matrix M is used to precondition R, the vector -MI is the first
member of the linear conjugate-gradient sequence, and is more likhly to give a
good reduction in the function than the negative gradient; see Gill, Murray and
Nash (1981) for further details.

S. Am Ihequaft QP Apprech

In this section, we briefly mention an alternative formulation of the QP sub-
problem - as an inequality-constraint QP (IQP). (Escudero, 1980, also discusses
IQP subproblems for large-scale problems.) In this case, the relational operator
associated with an original nonlinear constraint is carried over to the subproblem
(i.e., inequalities in the original problem become inequalities in the subproblem),
and the general form of the subproblem is given by (13).

Because an IQP subproblem contains inequalities, it must be solved by
an iterative QP algorithm. In general (assuming that all the variables appear
nonlinearly), a full a X a matrix R must be available, since it will not be known a
priori which set of constraints will hold as equalities at the solution. In addition,
a !phae I procedure will typically be required to find a feasible point with
respect to the constraints.

All the suggestions made concerning an EQP subproblem can be applied
to an IQP subproblem, since most QP algorithms are based on an active set
strateg (see Cottle and Djang, 1979). Note that the two approaches differ only
when more than one iteration is needed to solve the IQP. Therefore, solving an
IQP subproblem is always more work than solving an EQP subproblem. As in
the algorithm of MINOS/AUGMENTED, it seems essential to limit the number
of iterations to be performed in solving the subproblem.

For solving a large-scale problem, an IQP approach could be implemented
using a sparsity-exploiting QP method to solve (27) - for example, Tomlin's
(1976) implementtion of Lemk's method (Lemke, 1965). Most methods of this
type are based on pivoting" operations with the extended matrix

(HAT)

Thus, there is a need Is to develop efbetive variants of these methods when a
squet of IQP subproblems must be solved that are related in the special ways
noted earlier. In particular, only the last few rows of A may vary; orH rmay be
modified by a low-rank matrix I certain quasi-Newton techniques re used to
approximate the Hessin of the Larangian funcion.
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g. CoelmI..s

We have indicated some of the compromises necessary to implement QP-based
methods for large-scale nonlinearly constrained optimisation. As in the linear-
constraint case, the search direction can no longer be computed with 9ideal*
numerical procedures. Furthermore, it may be helpful to alter the formulation
of the subproblem in the interests of computational efficiency.

It is unclear whether the superiority of QP-based methods in the dense
case will carry over to large-scale problems with bounds, linear and nonlinear
constraints. The alternatives now available involve a higher-level subproblem,
and may be less flexible in adapting the subproblem to the unpredictability of
nonlinear constraints. However, they benefit from the ability to use directly the
existing codes for large-scale linearly constrained optimisation. Thus, the price
paid for the greater flexibility of a QP-based method is a considerable increase
in programming complexity, and a reduced ability to use existing software.
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